sigora.Rd
This function determines which Signatures (GPS) from a collection of GPS
data (GPSrepo
argument) for the specified pathway repository are
present in the specified list of genes of interest (queryList
argument)). It then uses the distribution function of hypergeometric
probabilities to identify the pathways whose GPS are over-represented among
the present GPS and saves the results to the file specified in the
saveFile
argument.
sigora( GPSrepo, level, markers = FALSE, queryList = NULL, saveFile = NULL, weighting.method = "invhm", idmap = load_data("idmap") )
GPSrepo | An object created by |
---|---|
level | In hierarchical repositories (e.g. Reactome) number of levels to consider. Recommended value for KEGG: 2, for Reactome: 4. |
markers | Whether to take single genes that are uniquely associated with only one pathway into account (i.e. should pathway unique genes/PUGs be considered GPS?). Recommended value: TRUE (1). |
queryList | A user specified list of genes of interest ('query list'), as a vector of ENSEMBL/ ENTREZ IDs or gene symbols (HGNC/MGI). |
saveFile | If provided, the results are saved here as a tab delimited File (including , for each pathway, a list of genes ordered by their contribution to the statistical significance of the pathway). |
weighting.method | The weighting method or GPS. The default weighting
scheme for the GPS is the reciproc of the harmonic mean of the degrees of
the two component genes of a GPS. A wide range of alternative weighting
schemes are pre-implemented (see below). Additional user defined weighting
schemes are also supported. Currently, the following alternatives are
pre-implemented: |
idmap | A dataframe for converting between different gene-identifier types (e.g. ENSEMBL, ENTREZ and HGNC-Symbols of genes). Most users do not need to set this argument, as there is a built-in conversion table. |
A dataframe listing the analysis results.
A dataframe describing the detailed evidence (present Gene-Pair Signatures) for each pathway.
Foroushani AB, Brinkman FS and Lynn DJ (2013).“Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures.”PeerJ, 1
##query list ils<-grep("^IL",load_data('idmap')[["Symbol"]],value=TRUE) ## using precompiled GPS repositories: sigRes.ilreact<-sigora(queryList=ils,GPSrepo=load_data('reaH'),level=4) #> [1] "Mapped identifiers from Symbol to EntrezGene.ID ..." #> pathwy.id description pvalues #> 1 R-HSA-446652 Interleukin-1 family signaling 3.847e-243 #> 2 R-HSA-8854691 Interleukin-20 family signaling 2.827e-98 #> 3 R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 1.716e-78 #> 4 R-HSA-451927 Interleukin-2 family signaling 1.550e-60 #> 5 R-HSA-448424 Interleukin-17 signaling 1.471e-46 #> 6 R-HSA-5673001 RAF/MAP kinase cascade 2.309e-25 #> 7 R-HSA-449836 Other interleukin signaling 8.310e-24 #> 8 R-HSA-6783783 Interleukin-10 signaling 1.503e-19 #> 9 R-HSA-9020702 Interleukin-1 signaling 2.176e-17 #> 10 R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 5.636e-15 #> 11 R-HSA-447115 Interleukin-12 family signaling 4.494e-13 #> 12 R-HSA-9020591 Interleukin-12 signaling 3.018e-10 #> 13 R-HSA-5684996 MAPK1/MAPK3 signaling 8.049e-09 #> 14 R-HSA-8983432 Interleukin-15 signaling 5.950e-08 #> 15 R-HSA-110056 MAPK3 (ERK1) activation 3.581e-07 #> Bonferroni successes PathwaySize N sample.size #> 1 3.851e-240 114.71 642.09 603749.5 391.96 #> 2 2.830e-95 42.03 149.33 603749.5 391.96 #> 3 1.718e-75 54.32 1301.05 603749.5 391.96 #> 4 1.552e-57 25.82 78.45 603749.5 391.96 #> 5 1.472e-43 24.00 204.16 603749.5 391.96 #> 6 2.311e-22 34.00 4439.66 603749.5 391.96 #> 7 8.318e-21 22.05 1335.85 603749.5 391.96 #> 8 1.505e-16 12.83 230.96 603749.5 391.96 #> 9 2.178e-14 10.00 158.19 603749.5 391.96 #> 10 5.642e-12 8.28 100.92 603749.5 391.96 #> 11 4.498e-10 7.89 94.29 603749.5 391.96 #> 12 3.021e-07 6.50 124.19 603749.5 391.96 #> 13 8.057e-06 5.26 100.03 603749.5 391.96 #> 14 5.956e-05 3.30 12.19 603749.5 391.96 #> 15 3.585e-04 3.00 21.17 603749.5 391.96 sigRes.ilkeg<-sigora(queryList=ils,GPSrepo=load_data('kegH'),level=2) #> [1] "Mapped identifiers from Symbol to EntrezGene.ID ..." #> pathwy.id description pvalues Bonferroni #> 1 hsa04060 Cytokine-cytokine receptor interaction 0.000e+00 0.000e+00 #> 2 hsa04630 Jak-STAT signaling pathway 3.962e-17 1.208e-14 #> 3 hsa05330 Allograft rejection 8.856e-11 2.701e-08 #> successes PathwaySize N sample.size #> 1 942.26 14774.33 452219.2 984.55 #> 2 27.29 1406.10 452219.2 984.55 #> 3 15.00 703.00 452219.2 984.55 ## user created GPS repository: nciH<-makeGPS(pathwayTable=load_data('nciTable')) #> Time difference of 0.9443071 secs sigRes.ilnci<-sigora(queryList=ils,GPSrepo=nciH,level=2) #> [1] "Mapped identifiers from Symbol to Ensembl.Gene.ID ..." #> pathwy.id description pvalues Bonferroni successes #> 1 il23pathway IL23-mediated signaling events 5.494e-64 1.049e-61 36.27 #> 2 il27pathway IL27-mediated signaling events 3.164e-34 6.043e-32 18.14 #> 3 il12_2pathway IL12-mediated signaling events 3.188e-12 6.089e-10 13.20 #> 4 il1pathway IL1-mediated signaling events 1.115e-09 2.130e-07 8.42 #> 5 il4_2pathway IL4-mediated signaling events 1.070e-05 2.044e-03 9.03 #> PathwaySize N sample.size #> 1 172.95 46257.95 93.08 #> 2 65.51 46257.95 93.08 #> 3 420.16 46257.95 93.08 #> 4 156.05 46257.95 93.08 #> 5 687.89 46257.95 93.08 ## user defined weighting schemes : myfunc<-function(a,b){1/log(a+b)} sigora(queryList=ils,GPSrepo=nciH,level=2, weighting.method = myfunc) #> [1] "Mapped identifiers from Symbol to Ensembl.Gene.ID ..." #> pathwy.id description pvalues Bonferroni successes #> 1 il23pathway IL23-mediated signaling events 4.951e-72 9.456e-70 41.51 #> 2 il27pathway IL27-mediated signaling events 1.188e-39 2.269e-37 21.16 #> 3 il12_2pathway IL12-mediated signaling events 3.589e-21 6.855e-19 21.30 #> 4 il1pathway IL1-mediated signaling events 4.429e-12 8.459e-10 10.44 #> 5 il4_2pathway IL4-mediated signaling events 6.339e-06 1.211e-03 10.34 #> PathwaySize N sample.size #> 1 196.67 57510.17 116.58 #> 2 76.34 57510.17 116.58 #> 3 526.02 57510.17 116.58 #> 4 179.14 57510.17 116.58 #> 5 804.61 57510.17 116.58